
北海道電力株式会社

屋内配線(受電点からPCSまで)の電圧上昇値の簡易計算書

箇所を入力することで自動計算 手計算の場合は白紙を印刷し使用 お客さま名:

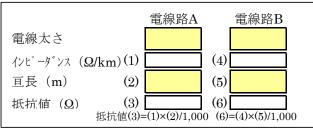
■ 受電点からPCSまでの電圧上昇値の計算

電圧上昇計算式 △V = K×発電電流 Ig×(引込口配線の抵抗値 Ra+屋内配線の抵抗値 Rb)

(1) K

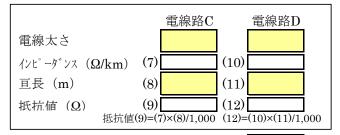
電気方式 単相3線式100/200V K= 1 ...①

電気方式 K 単相2線式100V 2 単相2線式200V 2 単相3線式100/200V 1 ※1 三相3線式200V √3


※1 電圧線と中性線との電圧を求めるため1としている。

(2) 発電電流Ig

発電容量P 5.9 kW


発電電流 $Ig = \frac{\Re a \otimes \operatorname{E} P(kW) \times 1,000}{\Re a \otimes \operatorname{E} V(V)} = \begin{bmatrix} 28.1 & A & ...② & ...$

電気方式	発電電圧V
単相2線式100V	105
単相2線式200V	210
単相3線式100/200V	210
三相3線式200V	$\sqrt{3} \times 210$

引込口配線の抵抗値Ra: (3)+(6)= Ω...(3)

屋内配線の抵抗値:Rb **- - -**

屋内配線の抵抗値Rb: (9)+(12)= $\Omega...$ ④

(4) 電圧上昇値 (/V) の計算

電圧上昇値 \triangle V = K(①) × 発電電流 Ig(②) × [引込口配線の抵抗値 Ra(③)+屋内配線の抵抗値 Rb(④)]

受電点からPCSまでの電圧上昇値

(判定結果)

#VALUE!

※電圧上昇値が標準電圧の2%を超えている場合、電線太さ・亘長の見直しを お願いします。

電線インピーダンス (抵抗)

引认口配線 · 层内配線 (軟鍋)

線種	(0/km)
2.0mm	5.650
2.6mm	3.350
3.2mm	2.210
$5.5 \mathrm{sg}$	3.330
8sq	2.310
14sq	1.300
22sq	0.824
38sq	0.487
60 sq	0.303
100sq	0.180
150 sq	0.118
$200 \mathrm{sq}$	0.092
250 s q	0.072

電線要覧 JIS C3307-1980に基づく